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Abstract The near-trench behavior of subduction megathrust faults is critical for understanding
earthquake hazard and tsunami generation. The shallow subduction interface is typically located in
unconsolidated sediments that are considered too weak to accumulate elastic strain. However, the spectrum
of shallow fault slip behavior is still elusive, due in large part to the lack of near-field observations. Here we
combine measurements from seafloor pressure sensors near the trench and an onshore GPS network in a
time-dependent inversion to image the initiation and migration of a well-documented slow slip event (SSE) in
2007 at the Nicoya Peninsula, Costa Rica. Our results show that the shallow SSE initiated on the shallow
subduction interface at a depth of ~15 km, where pore fluid pressure is inferred to be high, and propagated
all the way to the trench. The migrating event may have triggered a second subevent that occurred 1 month
later. Our results document the release of elastic strain at the shallow part of the subduction megathrust
and suggest prior accumulation of elastic strain. In conjunction with near-trench shallow slow slip recently
reported for the Hikurangi subduction zone and trench breaching ruptures revealed in some large
earthquakes, our results suggest that near-trench strain accumulation and release at the shallower portions
of the subduction interface is more common than previously thought.

1. Introduction

Over the past decade, geodetically detected slow slip events (SSEs) and accompanying nonvolcanic tremor
have been observed in many subduction zones, expanding the spectrum of known fault behaviors and
providing insight into fault mechanics [e.g., Dragert et al., 2001; Rogers and Dragert, 2003; Schwartz and
Rokosky, 2007]. Although they do not release strain at the same rate as normal earthquakes, fault slip during
SSEs is typically associated with shear failure on the plate interface [Rubinstein et al., 2007]. These slips
presumably follow a rate-and-state constitutive law [Liu and Rice, 2005]. Most observed SSEs are located
downdip of seismogenic zones [Schwartz and Rokosky, 2007; Schmidt and Gao, 2010]. The shallow portion
of the subduction interface updip of seismogenic zones is usually considered to be velocity strengthening,
where frictional resistance increases with slip velocity, limiting fast slip propagation [Scholz, 1998]. In many
places, the frontal prism has been thought to be too weak to accumulate elastic strain and to deform continu-
ously throughout the seismic cycle [Byrne et al., 1988]. However, this assumption is challenged by rare obser-
vations of interseismic strain accumulation near the trench [Gagnon et al., 2005; Davis et al., 2011] and
occasional rapid rupture during seismic events [Kanamori and Kikuchi, 1993; Fujiwara et al.,, 2011; Newman
et al,, 2011]. Furthermore, in different subduction zones, shallow SSEs have been inferred from geodetic
observations [Vallee et al., 2013; Dixon et al., 2014; Wallace et al., 2016]. It is also important to note that the
lack of observed shallow SSEs elsewhere may reflect the sampling bias resulting from the limited offshore
resolution of onshore GPS networks. Another uncertainty in budgeting the spatial distribution of strain accu-
mulation at a subduction interface, even in an area with inferred shallow SSEs, is whether such slip extends all
the way to the trench. For this, direct seafloor observations near the deformation front are necessary. Since
tsunami amplitudes are particularly sensitive to slip near the trench, understanding fault behavior and strain
accumulation at the shallow portion of the plate interface is critical for understanding the tsunami process
and for improved hazard mitigation [Okal, 1988].

The 2012 M,, 7.6 Nicoya earthquake is among a group of subduction zone events that lack shallow seismo-
genic rupture and a significant tsunami [Protti et al., 2014] (Figure 1). Inversion of onshore GPS data suggests
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Figure 1. (a) Seismotectonic setting of the Nicoya Peninsula and adjacent
area. Shaded areas are coseismic rupture areas of the 1990 Gulf of Nicoya
earthquake [Protti et al., 1995], 1992 Nicaragua earthquake [lhmlé, 1996],
1999 Quepos earthquake [Bilek et al., 2003], and 2012 Nicoya earthquake [Yue
et al,, 2013]. Red triangles are locations of continuous GPS sites used in the
inversion. Inverted red triangle is the location of the IODP Hole 1255A
borehole observatory. Blue and black triangles are operating seismic stations
and collocated GPS and seismic stations, respectively, that were operating at
the time of the 2007 SSE. Fisher Seamount Chain (FSC) and Quepos Plateau
(QP) are shown in the bathymetry map. (b) Cross-strike seismic reflection
profile at the pressure monitoring sites (inverted triangle in Figure 1a).
Formation pressure screen locations are shown with black rectangles

filled with gray. Seafloor pressure sensors are shown with blue inverted
triangle filled with gray. Modified from Davis et al. [2015] with permission
from Elsevier.

that coseismic and transient slip
regions are mutually exclusive; i.e.,
the coseismic rupture area is sur-
rounded by slow slip and afterslip
patches, both updip and downdip
[Dixon et al., 2014; Malservisi et al.,
2015]. This likely reflects different
fault frictional properties on the
plate interface. Shallow SSEs have
been reported beneath the Nicoya
Peninsula and have been suggested
as one of the reasons for the lack of
tsunami in the region [Dixon et al,
2014]. Slip to the trench has been
suggested in Nicoya [Davis et al,
2015], but the connection between
shallow SSEs and slip penetrating
fully to the trench remains unclear.
In Hikurangi, Wallace et al. [2016] sug-
gest that slow slip propagates to
within 2 km landward of the trench
by using a seafloor pressure network.
Their near-trench resolution is low
owing to the lack of observing sites
at the trench. Offshore the Nicoya
Peninsula, two seafloor pressure
recorders are installed in the Middle
America trench, one on the incoming
Cocos plate and the other 800 m
landward on the prism toe, providing
direct observation of seafloor displa-
cement during SSEs (Figure 1). Here
we report the first examination of
transient slip behavior at the Nicoya
Peninsula, Costa Rica, that combines
onshore GPS and offshore seafloor
pressure measurements of an SSE in
2007. We show that the observations
are consistent with slow but continu-
ous propagation of slip from a deeper
source to the trench.

2. Data and Processing
Methods

Onshore continuous GPS (cGPS) was
first installed at the Nicoya Peninsula

in 2002 and has been expanding since then (Figure 1). The first slow slip event was observed by this network
in 2003 [Protti et al., 20041, with similar events occurring about every 2 years [Jiang et al., 2012]. By the time of
the 2007 SSE, a total of 12 operating cGPS sites provided three-component position time series. We used raw
RINEX files downloaded from UNAVCO data archive (www.unavco.org/data/data.html) and GIPSY v6.3 from
Jet Propulsion Lab (JPL; https://gipsy-oasis.jpl.nasa.gov/) to compute daily coordinates for each station. We
adopted precise point positioning strategy in our data analysis [Zumberge et al., 1997]. Wide Lane Phase
Bias files provided by JPL were used to resolve single receiver ambiguity [Bertiger et al., 2010]. The precise
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Figure 2. GPS and OBP time series and model fit. Red dashed lines are time-
dependent model predictions at all locations. Black circles are (a) positions
time series of GPS stations and (b) vertical movements of ocean bottom
pressure site 1255. We used 12 GPS sites and the differential vertical displa-
cement at OBP site 1255 to invert slow slip in the vicinity of the Nicoya
Peninsula. Horizontal displacements at site 1255 are arbitrarily set to 0,
with large uncertainties (2 m) assigned to the data in order to deweight
the horizontal components. The GPS data and model fit have been scaled by
a factor of 2 to better show the SSE signals. OBP vertical data and model fit
are not scaled.

orbit and satellite clock files from
JPL using a globally distributed
network were used in the analysis.
We excluded daily observations
with less than 4 h of observations.
Numerical predictions from the
Vienna Mapping Functions were
used to correct propagation time
delay induced by water vapor
in the troposphere [Boehm et al.,
2006]. Daily coordinates were first
evaluated in a loosely constrained
reference frame and then aligned
to the IGb08 reference frame
[Rebischung et al., 2012] through a
seven-parameter transformation.
We applied a least-square algo-
rithm that simultaneously fit the
long-term linear trend, seasonal
signal, and slow slip event to the
daily raw time series [details see
Jiang et al, 2012]. The post-fit
weighted root mean squares for
the raw time series are ~3 mm,
~3 mm, and ~8 mm for the north,
east, and vertical components,
respectively. A regional common
mode filter was used to remove
common mode error from the
same regional noise sources
[Wdowinski et al, 1997]. Regional
filtering reduced the post-fit
weighted root mean squares to
~2mm, ~2mm, and ~6mm for the
three components. We calculated
and removed the linear trend and
seasonal (annual and semiannual)
signal in the filtered time series
and used the corrected time series
in the slip modeling.

Two offshore Circulation Obviation
Retrofit Kit instruments were
installed in 2002, providing contin-
uous monitoring of formation

pressure and seafloor pressure just above the prism toe décollement and within the incoming oceanic
crust [Davis and Villinger, 2006] (Figure 1). In Nicoya the presence of borehole measurements at two sta-
tions ~800 m apart and spanning the seafloor locus of the subduction thrust provides unique data to test
if slow slip extends to the trench. Changes of formation fluid pressure result from episodic volumetric strain
disturbance caused by slip close to the trench [Davis et al., 2011, 2015]. Changes in seafloor pressure result
from vertical seafloor displacement; specifically, displacement of the prism relative to the incoming plate
can be determined from the difference in absolute seafloor pressure between the two sites [Davis et al.,
2015; Biirgmann and Chadwell, 2014]. This is included with GPS data in our geodetic inversion (Figure 2).
By differencing the measurements from the two closely spaced pressure sensors, we remove common
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oceanic noise sources. Seafloor pressure time series are first detrended to remove instrumental drifts of
—0.04 and +0.5 kPa/yr, equivalent to 0.4 and 5 cm/yr change in water depth, at Holes 1253A and 1255A,
respectively. Resultant averaged daily vertical differential displacement time series have uncertainties of
less than 2 mm (Figures S1 and S2 in the supporting information), enabling detection of small seafloor
uplift. The prism site (site 1255A) is ~700 m landward of the prism toe, and differential pressure shows
uplift during the 2007 SSE, suggesting slip to the trench during this event.

In addition to the GPS and seafloor pressure instruments, 13 broadband and short period seismometers were
operating in the same region at the time of the 2007 SSE (Figure 1). We used data from this seismic network and
a modified version of the envelope cross-correlation method [Wech and Creager, 2008] to detect and locate tre-
mor (Figure S3) and compare its spatiotemporal distribution to that of the 2007 slow slip (Movie S1). In order
not to mistake the abundant microseismicity as tremor, we band-pass filtered east component data in two
frequency ranges before creating and cross-correlating envelope functions, a tremor band between 2 to
5 Hz and an earthquake band between 8 to 20 Hz. Tremor detection occurred when cross-correlation coeffi-
cients exceeded a value of 0.6 on more than 10 station pairs filtered in the tremor band and did not exceed a
value of 0.6 on more than five station pairs filtered in the earthquake band [for details see Kim et al., 2011].

3. Time-Dependent Model

We applied a modified network inversion filter [e.g., Segall and Matthews, 1997; McGuire and Segall, 2003; Liu
etal, 2010, 2015] to model time-varying deformation signals and spatiotemporal evolution of transient fault
slip on the megathrust interface beneath the Nicoya Peninsula. We used the combination of onshore GPS and
offshore seafloor pressure sensors and focused on the 2007 SSE, a well-studied event [Outerbridge et al., 2010;
Dixon et al., 2014]. We validate the earlier static inversion results and expand the geographic coverage and
improve offshore resolution by including the seafloor pressure data at the prism toe. The modeling includes
positivity and spatial smoothing constraints, incorporates observations and constraints into a state-space
model of system and measurement process, and solves for slip distribution using an extended Kalman
filter. We model the interplate thrust surface with a triangular mesh that takes into account complex
three-dimensional fault geometry. We use the interplate fault geometry from Slab1.0 [Hayes et al., 2012]
and construct the triangular grid from discrete isodepth contour points. We calculate the elastostatic
Green'’s function using triangular dislocation elements [Jeyakumaran et al., 1992] and perform spatial smooth-
ing on a triangular surface based on the Fujiwara operator [Desbrun et al.,, 1999]. We assume that transient
deformation due to slow slip results mainly from reverse slip on the subduction thrust interface. Including
a strike-slip component in the modeling does not improve the data fit. We impose a nonnegative constraint
in the slip inversion. The GPS benchmark motion is modeled as a random walk [Agnew, 1992; Langbein and
Johnson, 1997] with scale parameter z = 0.5 mm/,/yr. The average mesh size in our triangular mesh is
~23 km. Using a smaller mesh size or a larger benchmark wobble term (e.g,, 1 mm/,/yr) does not change
the results. We select the optimal hyperparameters for temporal and spatial smoothing through a grid search
and the inspection of trade-off between the data fit and the roughness of the resultant slip distribution.
Cleaned and filtered three-component position time series from ~12 continuous GPS sites from the Costa
Rica GPS network, along with the vertical displacement derived from the seafloor differential pressure data,
were used to invert for slip history of the 2007 slow slip event (Figure 2).

4, Inversion Results

Adding the seafloor pressure data has greatly improved our network resolution offshore (Figure S4). By add-
ing one OBP site, our resolution test shows dramatic increase of network sensitivity to the near trench slip
(Figure S4c). For the deeper megathrust, the new slip distribution from our time-dependent inversion stays
unchanged compared to earlier results [Dixon et al., 2014], but we are now able to estimate the offshore slip
distribution (Figure 3) and slip migration during the course of the 2007 SSE (Figure 4). We find one slip patch
centered 25-30 km landward from the trench, with a maximum slip of ~10 cm. The slip decreases seaward
from the peak amplitude and reaches to the trench with ~5 cm of slip. The area of slip includes a number
of structures related to fluid seepage [Sahling et al., 2008], experienced fluid flow anomalies during a transient
event in 2000 [Brown et al., 2005], and is believed to be rich in fluid released from subducted marine sedi-
ments [Saffer and Tobin, 2011]. All suggest an underlying fluid source that is probably overpressured.
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Cumulative Slip 2007-2008 Slip (cm) . . .
Our time-dependent inversion results

provide information on slip propaga-
tion (Movie S1). We find that slow slip
initiates at the shallow and updip
portion of the coseismic rupture
area in the 2012 Nicoya earthquake
(Figure 4). The location of initiation
matches the patch of maximum slip
in the shallow portion and is collo-
cated with areas of high pore fluid
pressure [Saffer and Tobin, 2011].
The 2007 SSE initiated on day of year
(DOY) 136 (16 May 2007), coincident
with the onset of shallow tremor,
then propagated in both dip and
) . . . o strike directions. Downdip slip propa-
o o e o gation is faster than updip and along-
Figure 3. Accumulated slip of the 2007 SSE. Red triangles are locations of ~ strike propagation. The slip front has
continuous GPS sites used in the inversion. Inverted red triangle is the loca- a downdip propagation speed of
tion of the IODP Hole 1255A borehole observatory. Model area is divided into .4 km/day, reaching the updip limit
discrete triangle elements, with an average .mes.h s.ize of 23 !(m. Color of coseismic rupture of the 2012
represents the amplitude of accumulated slip within each triangle element. .
Arrows represent slip directions on the plate interface. Solid red line outlines Nicoya earthquake by around DOY
the coseismic rupture area of the 2012 Nicoya earthquake [Yue et al., 2013]. 141. The slip front may have propa-
Red dots show the locations of identified seafloor fluid seepage [Sahling gated continuously downdip, around

et al, 2008]. the 2012 Nicoya asperity (Figure 4).

Similar to results in the static inver-
sion [Dixon et al., 2014], our time-dependent results show very little or no slow slip occurs inside the
1990 and 2012 earthquake asperities, presumably reflecting fundamental differences in frictional condi-
tions and the state of stress. The onset of prism toe deformation is well defined by both formation pres-
sure change near the décollement and the episode of seafloor uplift recorded by seafloor pressure sensors
(Figure S5). Slip propagates updip at a speed of about 2 km/day and reaches the trench on DOY 146. In
the meantime, slip migrates along-strike to the southeast of the Nicoya Peninsula at a similar speed. A
second subevent occurs approximately 1 month after the onset of the shallow event, around DOY 168.
This subevent expands into both shallow and deep portions of the subduction interface, producing a
maximum accumulated slip of ~20 cm. No transients are seen at the prism toe sites at the time of this
event, however, suggesting that this subevent did not propagate to the trench near site 1255A. The start
time of the second subevent correlates well with the time when the first event propagated to the updip
portion of the second subevent (Figure S6), suggesting possible triggering of the deep slow slip by the
shallow event.

In the area of the shallow SSEs in Costa Rica, pore pressure is estimated to be close to lithostatic [Saffer and
Tobin, 2011]. Thus, this region may be in a critical state subject to triggering of transient events by small stress
perturbations. Static and dynamic triggering of SSEs by small stress changes (a few kPa) have been found
worldwide [Peng and Gomberg, 2010]. Past studies have shown a 10 kPa increase of coulomb failure stress
associated with a similar SSE in the Nicoya Peninsula [Dixon et al., 2014]. To test whether the initiation of
the second subevent may be partly promoted by shallow transient slip, we calculated the coulomb stress
change on the plate interface resulting from the first shallow subevent. We used a nominal friction coefficient
of 0.6. The calculated coulomb stress increase at the deep slip area ranges from 5 to 20 kPa (Figure S7), which
is comparable to past triggering stress threshold found elsewhere [Wallace et al., 2012; Davis et al., 2013], sug-
gesting that triggering of the second slip subevent cannot be excluded.

5. Discussion and Conclusions

Our results, along with evidence from observations at the Hikurangi margin, New Zealand [Wallace et al.,
2016], and Nankai trough, Japan [Davis et al., 2006, 2013], suggest that cases of rupture to the trench during
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Figure 4. Time-dependent slip history of the 2007 SSE. Color represents average slip rate within each element. Title of
each subplot is the day-of-year (DOY) range of the subplot. Red lines are the coseismic rupture area of the 1990 Gulf of
Nicoya earthquake [Protti et al., 1995] and 2012 Nicoya earthquake [Yue et al., 2013].

aseismic events are more common than previously thought. Unlike Hikurangi and Nankai, the Nicoya GPS
and seafloor pressure network is able to resolve ~5 cm of slip to the trench during the 2007 event with
confidence. The pressure monitoring site is within 700 meters of the deformation front and shows delayed
seafloor uplift following several other slow slip events detected by onshore GPS and accompanied by off-
shore nonvolcanic tremor [Davis et al., 2015; Walter et al, 2013], implying that slip propagating to the
trench from a deeper source is common at the Nicoya Peninsula. Frequent slip at the trench highlights
the importance of understanding shallow source areas in accumulating strain, hosting seismic and aseis-
mic slip, and tsunamigenesis. Our result suggests that portions of the shallowest part of the subduction
zone are at least strong enough to accumulate a slip deficit between its frequent SSEs. However, the fact
that no SSE initiates at the trench [Davis et al., 2015] may suggest that the trench portion of the interface
acts only in response to slip at deeper levels. To address this and to obtain a more comprehensive under-
standing of shallow fault behavior for better tsunami hazard assessment and mitigation, further continu-
ous monitoring of strain accumulation and release in the shallowest parts of subduction zones will
be required.

The very shallow portions of the subduction interface are typically characterized by very low temperature and
pressure. Transitional frictional conditions are often attributed to the genesis of slow slip on the subduction
interface [e.g., Liu et al., 2005]. Both shallow slow slip and tsunami earthquakes are thought to occur under
transitional frictional conditions [Bilek and Lay, 2002; Saffer and Wallace, 2015] under which seismic slip can
propagate. Thus, the possibility that transitional friction conditions might extend all the way to the trench
in the offshore region of the Nicoya Peninsula cannot be excluded. Heterogeneities in frictional conditions
at the very shallow portions of the plate interface are likely, and we expect that locally high pore fluid pres-
sure may also play a role in generating the shallow slow slip events in Costa Rica. The shallow plate interface is
generally considered to be a high pore fluid pressure environment due to compaction and dehydration
of subducted oceanic sediments [Saffer and Tobin, 2011]. In Nicoya similar fluid-rich conditions have also
been suggested for the deep SSE zone based on seismic [Audet and Schwartz, 2013] and magnetotelluric
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[Worzewski et al., 2011] studies. These observations suggest that both deep and shallow SSEs may be driven
by similar mechanisms. The thin upper plate at shallow depth and elevated pore fluid pressure at both the
shallow and deep subduction interface serve to reduce the effective normal stress, increasing the width of
the conditionally stable zone and facilitating the occurrence of slow slip [Kodaira et al., 2004].

Just how spatially or temporally representative the behavior of the seaward part of the subduction thrust
described here might be difficult to say, and much needs to be learned before generalizing the observations.
Immediately to the north along the Mid-American Trench, a tsunami earthquake struck Nicaragua in 1992,
rupturing all the way to the trench [Kanamori and Kikuchi, 1993] (Figure 1). An extreme example of tsunami-
genic slip to the trench occurred during the Tohoku-oki subduction earthquake [Fujiwara et al., 2011]. The
Nicoya Peninsula has not experienced a severe tsunami in recorded history. However, from 2006 to 2011, five
episodes of seafloor uplift similar to the 2007 event have been documented at the same sites offshore Nicoya
[Davis et al., 2015]. These observations indicate that elastic strain can be released slowly at the prism toe, with
no seismogenesis or tsunamigenesis in the shallow subduction interface of the Nicoya Peninsula. Evidence of
seamount subduction beneath the Nicoya Peninsula has been found [Kyriakopoulos et al., 2015], and sea-
mounts certainly play a role in the subduction system. But it is not clear whether seamounts will promote
or inhibit large thrust earthquakes in subduction zones [Scholz and Small, 1997; Wang and Bilek, 2011]. In this
paper, we focus on the shallow portion of the subduction zone where the subducted oceanic plate is
relatively smooth; thus, our interpretation is not biased by the subducted seamount. If we assume a similar
5-10 cm slip for each of the shallow SSEs between 2006 and 2011 and recurrent nature of these shallow
SSEs, it would appear that shallow SSEs offshore of the Nicoya Peninsula may be sufficient to accommodate
plate motion; i.e., strain may not be accumulating over the long term. Of course, it is possible that tsunami-
genic earthquakes occur here, but with much longer recurrence intervals. Goldfinger et al. [2013] note that
subduction zone earthquakes can cluster in time, with the largest event tending to occur near the end of
the cluster, consistent with an accumulating slip deficit over several seismic cycles. We cannot preclude small
amounts of strain, below the resolution of our data, accumulating over multiple slow slip cycles. Only conti-
nuing observations will resolve this question.
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