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Abstract

The Nubia plate is considered to be a rigid plate and, as such, is used in the realization of
International Terrestrial Reference Frame (ITRF). Geophysical and geological observations
suggest that there is intraplate deformation within the Nubia plate along the Cameroon
volcanic line and the Okavango rift. To test this hypothesis and to evaluate rigid plate
motion, we divide the plate into three regions and calculate six Euler vectors based on
available long-term GPS data.

We process the data using GIPSY-OASIS 6.2 and analyze the resulting time series for
long term, annual, and semiannual signals. We calculate uncertainties for secular velocity
using the Allan variance of the rate technique. We also analyze the color of the noise of
each time series as a function of latitude and climatic region, and show that it is not latitude-
dependent.

Although geological and geophysical studies indicate the possibility of intraplate defor-
mation, the current Global Positioning System (GPS) network cannot identify deformation
within the Nubia plate, suggesting that it is behaving as a rigid plate within uncertainty.

Keywords

Euler vectors • Nubia plate • Plate rigidity • Reference frame

1 Introduction

Plate rigidity is one of the main paradigms of plate tectonics
and is a fundamental assumption in the definition of a global
reference frame like the ITRF (e.g. Altamimi et al. 2011).
Although still far from optimal, the recent increase in GPS
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instrumentation within the African region allows us to better
understand the applicability of the rigidity assumption to the
Nubia plate.

The Nubia plate corresponds to the western and largest
part of Africa. It formed from the early Miocene division
of the African region along the continental East African
Rift system (EARs) (Roberts et al. 2012) and is bordered
by four extensional boundaries on the east, northeast, west,
and south, and one compressional boundary on the northwest
(Chu and Gordon 1999; Bird 2003). The continental part of
the Nubia plate is composed of three large Archean cratonic
regions (West Africa, Congo, and South African Kalahari)
with lithospheric mantle thickness greater than 300 km (Begg
et al. 2009), indicating a low degree of recent tectonic
activity. The cratons are separated by old suture zones of
possibly weaker lithosphere (e.g., Begg et al. 2009; Tokam
2010). The Nubia plate and its counterpart, the Somalia
plate on the East side of EARs, are linked together by three
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Fig. 1 Map of Africa showing the Nubia (NU) and Somalia (SO) plates
and the three microplates: Victoria Plate (VP), Rovuma Plate (RP), and
Lwandle Plate (LP). The swEAR indicates the South West continuation
of the EARs. Green lines indicate the Cameroon volcanic line. WC
indicates the West African craton, CC the Congo craton, and KC the
Kalahari Craton (from Begg et al. 2009). Red lines show well-defined

(solid) and assumed (dashed) plate boundaries (from Bird 2003 and
Stamps et al. 2008). The three Nubia plate cratons (West Africa, Congo,
and Kalahari) are labeled. GPS sites are color coded by time series
length with a symbol indicating their regional network. Right side shows
enlarged maps of the West (top) and South (bottom) networks

microplates: Victoria, Rovuma, and Lwandle (Fig. 1), which
are separated by well-defined divergent boundaries (the dif-
ferent branches of EARs) (Hartnady 2002; Calais et al. 2006;
Stamps et al. 2008; Saria et al. 2013). Plate reconstructions
indicate that the Nubia plate underwent internal deformation
along the suture zones during the breakup of Gondwana (e.g.,
Reeves and De Wit 2000; Eagles 2007; De Wit et al. 2008).
Observed seismicity, geomorphology, and geophysical data
suggest that the Cameroon volcanic line (CVL, the region
separating West Africa and Congo cratons and a hot spot
track) and the southwest propagation of the East African
Rift System (swEAR) are tectonically active (e.g., Midzi
et al. 1999; Modisi 2000; Hartnady 2002; Shemang and
Molwalefhe 2011; Yu et al. 2015). Previous geodetic studies
show that internal tectonic deformation within the Nubia
plate is �0.6 mm/year and may be located along the swEAR
(Malservisi et al. 2013; Saria et al. 2013). The uncertainties
are however larger than the value itself, and the location of
deformation is not well-constrained.

2 Data Acquisition and Processing

We use all of the publically available continuous GPS
(cGPS) data within stable Nubia from the following
archives: TRIGNET (ftp://ftp.trignet.co.za), AFREF
(ftp://ftp.afrefdata.org), NIGNET (http://server.nignet.net/
data), UNAVCO (ftp://data-out.unavco.org/), and CDDIS
(http://cddis.nasa.gov/). To obtain a reliable velocity
field, we only use sites with at least 2.5 years of
data (Blewitt and Lavallée 2002; Bennett et al. 2007;
Malservisi et al. 2013). The sites have also been used
in previous geodetic studies, however determination of
stability of monumentation is beyond the scope of this
study.

We divide the sites into three main regions: South, corre-
sponding to the Kalahari craton and South Africa (46 sites);
Central, corresponding to the area between the swEAR and
the CVL (7 sites); and West, including all the sites northwest
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of the CVL (mainly NIGNET and AMMA sites, 21 sites)
(Table S1). Although the amount of analyzed data is still
far from ideal for a large plate like Nubia, the velocity
field presented here shows a significant improvement in time
series length (3 years longer) and plate coverage (with 84
stations having more than 2.5 years of observation) compared
to previous publications by Malservisi et al. (2013) and Saria
et al. (2013).

We obtain daily static positions for each site using at
least 20 hours of dual frequency observations. We process
the data using the GIPSY–OASIS 6.2 software (Lichten
and Border 1987) and the precise point positioning (PPP)
method described by Zumberge et al. (1997) using orbit and
clock data provided by jet propulsion laboratory (JPL). We
perform phase ambiguity resolution using the single receiver
algorithm (Bertiger et al. 2010), correct for ocean loading
using FES2004 (Lyard et al. 2006), and calculate tropo-
spheric delay using Vienna Mapping Functions (Boehm et al.
2006). We then align the solutions with IGb08 (Rebischung
et al. 2011) through daily seven-parameter transformations
(x-files) provided by JPL.

We analyze the time series for long-term trends to com-
pute secular velocities of each site. We also analyze each
component independently and correct the time series for
jumps due to known equipment replacement or co-seismic
signals. We visually inspect each time series and use the
MATLAB code PATV (Selesnick et al. 2012) to identify
other unknown jumps. We then fit each time series compo-
nent using the equation

x .ti / D a C vti C b cos .2�ti C �a/

C c cos .4�ti C �s/ C
mX

j D1

dj H
�
ti � tj

� (1)

where a is the position at reference time, v is the long-term
secular velocity, b and �a are the amplitude and phase of the
annual signal, c and �s are the amplitude and phase of the
semiannual signal, m is the number of jumps within the time
series at time tj, dj is the unknown amplitude of the jump, and
H

�
ti � tj

�
is the Heaviside function.

Following the description of Njoroge (2015) and
Malservisi et al. (2015), we remove daily positions that
differ by more than five times the nominal uncertainty
from the time series and re-fit the data in an iterative
way, until no outliers remain (generally, a single iteration
is enough). We detrend the resulting clean time series to
compute uncertainties. Note that applying this method to
time series with large and often almost periodic gaps could
be problematic. Analyzing annual or semi-annual signals in
such time series affects the long-term rate much more than
any estimation of velocity uncertainty. In our case, we found
that the effects on the station TAMP are such that does not

allow a reliable velocity estimation thus the station TAMP is
not used in our analysis.

We estimate velocity uncertainties using the Allan Vari-
ance of the rate (AVR) (Hackl et al. 2011, 2013) with a
combination of white and power law noise (Malservisi et al.
2013). Although we detrend the time series by removing
annual and semi-annual signals, the AVR analysis indicates
the presence of a periodic signal with a period between 70
and 100 days. Although we do not conduct a full spectral
analysis to identify such a period, the best fit of the AVR
occurs with a periodic signal of 89 days (approximately a
quarter of a year), which we add to the error model. It is
possible that such period is part of higher harmonic compo-
nents of the yearly seasonal signal that are not removed by
the filtering of Eq. (1).

Table S1 in the supplemental material has detailed infor-
mation about the GPS stations and the observed secular
velocities.

3 Rigid Block Motion

We apply the Euler theorem (McKenzie and Parker 1967)
to calculate the rigid motion of each region with respect
to IGb08. We use methodology described by Plattner et al.
(2007) and Malservisi et al. (2013) to identity stations pro-
ducing the best-fitting Euler vector for each region. As
described in Malservisi et al. (2013) stations with larger
residuals do not move according to rigid plate motion. A
part from tectonic motion, various factors such as bad mon-
umentation or local effects (e.g. water extraction or mining)
could affect the motion. Thus we decided not to use those
sites for Euler vector calculation. This process identifies the
subset of stations used to calculate Euler vectors describing
the rigid motion of the South, Central, and West regions and
their combinations (West C Central, South C Central, and
full Nubia). The reduced �2 of the obtained Euler vectors
varies from 2.58 to 7.95, and the average rate residuals range
from 0.33 to 0.61 mm/year. The Euler vectors are described
in Tables S2 and S3.

It is important to note that we can identify a subset of
stations with a reduced �2 � 1 for each region. These
stations have relatively long time series (approx. 6 years
for West and Central and 12 years for South), but are
often unevenly distributed and may not be representative
of the local rigid block motion. We also note that velocity
residuals computed using the larger number of stations are
randomly oriented (Figs. S1 and S2). We thus suggest that
the large reduced �2 is probably related to underestimated
uncertainties instead of departure from rigid plate behavior.
For these reasons, we prefer solutions with more stations
even if the reduced �2 � 1.
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3.1 West Region Euler Vector

Although there are 20 stations in the West region, we only
use 12 to calculate the Euler vector WEST (Fig. S1). Of the
two colocated stations DAKR and DAKA, we kept DAKA
(Table S1). We have no physical explanation for the large
residuals of BJKA, BJNA, BJNI, BKFP and ULAG. It is
likely that ACRA is influenced by anthropogenic activity
(oil and groundwater extraction) while high residuals at
YKRO may be related to the nearby Lake Kossou (Malservisi
et al. 2013) observed similar behavior at sites close to lakes
in South Africa). The reduced �2 of the resulting Euler
vector is 2.58 and the mean rate residual is 0.49 mm/year
(Table S2).

3.2 Central Region Euler Vector

It’s the least sampled region with only seven stations.
Malservisi et al. (2013) and Saria et al. (2013) showed
that MSKU and ULUB have large residuals and were not
used for our calculations (Table S1). Using the remaining
five stations (Fig. S1) results in a reduced �2 of 2.65 and rate
residual of 0.33 mm/year (Euler vector CENTRAL in Table
S2).

3.3 South Region Euler Vector

South Africa is the region with the densest GPS coverage.
Of the co-located sites HARB, HRAC, and HRAO; SUTH,
SUT1, and SUTM; and UPTA and UPTN, we kept HRAO,
SUTH, and UPTA respectively (Table S1). We used 28
stations to fit the Euler vector (Fig. S1). The reduced �2

and average residual are 7.95 and 0.39 mm/year respectively
(Euler vector SOUTH in Table S2). This region also had
stations with the longest time series and hence low velocity
uncertainties, explaining the higher reduced �2. We tested the
possibility of reducing the �2 by using sites in the driest and
most stable part of the network identified by Malservisi et al.
(2013) but this resulted in no significant improvement. Note
that the homogeneous velocity field in the Cape Town area
that Malservisi et al. (2013) suggested was related to strain
accumulation is no longer visible, indicating that it may
have been an artifact associated with the length of the time
series.

4 Combined Euler Vectors

4.1 West-Central Region Euler Vector

To obtain this Euler vector (WEST_C in Table S2)
we eliminate three extra stations due to high residuals

(FUTY, BJBA and BJPA) from those used for the WEST
and CENTRAL Euler Vectors. Using the remaining 14
stations (Fig. S2), the resulting fit for the Euler vector
has a reduced �2 of 4.89 and mean rate residual of
0.61 mm/year.

4.2 South-Central Region Euler Vector

This region consists of stations in the South and Central
regions (SOUTH_C in Table S2). We used only 33 sites
which were used in computation of SOUTH and CEN-
TRAL Euler vector to calculate SOUTH_C Euler vector (Fig.
S2). The reduced �2 and mean rate residual are 7.27 and
0.41 mm/year respectively.

4.3 Nubia Euler Vector

To calculate the NUBIA Euler vector, we rely on 42 sites
used to calculate the WEST_C and SOUTH_C Euler vectors
(Fig. S2). The reduced �2 and mean rate residual of this Euler
vector calculation are 6.79 and 0.47 mm/year respectively
(Table S2).

The large reduced �2 of some Euler vector fits may be
related to underestimated uncertainties. This may be due
to the error model used in the AVR interpolation (peri-
odic, power-law, and white noise) or an underestimation of
a higher time-correlated noise component (random walk).
Another possibility is that flicker noise is much stronger than
the time-correlated noise components, which can only be
observed with much longer time series. This is particularly
true using AVR, where only ¼ of the full time series length
is used to calculate the variance. In both cases, the error
model predicts smaller uncertainties resulting in the large
reduced �2.

In all Euler vector calculations, most stations have
residuals <0.5 mm/year, indicating a possible upper limit
for the internal deformation of the Nubia plate. The few
stations with residuals >1 mm/year appear to be stations
with problematic behavior, short time series, or gaps. All
other stations, with residuals between 0.5 and 1.0 mm/year,
are more likely be affected by local phenomena (e.g.,
subsidence or anthropogenic effects) rather than tectonic
motion.

5 Comparison of Euler Vectors

Traditionally, Euler vectors are compared separately by
plotting the position of the Euler pole (with relative
error ellipses) and its rate (with relative uncertainties).
Since the three components of the Euler vector are
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Fig. 2 Positions and 2� error ellipses (95% confidence) of the six Euler
poles: WEST (blue), CENTRAL (green), WEST_C (cyan), SOUTH_C
(magenta), SOUTH (red), and NUBIA (black) in 2-dimensions, calcu-
lated with respect to the IGb08 reference frame. Within uncertainties,

all of the poles except the WEST pole are compatible with each other.
(The brown circle in the inset map indicates the location of the Euler
poles.)

highly correlated, it is beneficial to compare the full
vectors with error ellipsoids instead of ellipses. In order
to make the error directly comparable, we decided to
use for the 2D and 3D cases the same confidence
intervals (68% and 95%) as described by Vanicek
and Krakiwsky (1987). By comparing the six Euler
poles calculated in this study using relative error we
observe that five of them overlap at 95% confidence
(Fig. 2) while four of them overlap at 68% confidence
(Fig. S3). WEST Euler pole (Figs. 2 and S3) is significantly
separated, suggesting that there may be relative motion
between West Africa and the rest of Nubia. When comparing
Euler vectors using the full covariance matrix (Fig. 3),

we observe that all ellipsoids overlap at 95% confidence,
indicating that at the current level of uncertainties, we
cannot rule out rigid plate behavior. The ellipsoids are
also partially overlapping (Fig. S4) at 68% confidence,
meaning that the likelihood of rigid plate behavior for
the full Nubia plate is significant, and that with current
uncertainties and network geometry, the Nubia plate moves
as a rigid block with respect to IGb08. Comparing our
Nubia Euler vector with those of Altamimi et al. (2007),
Nocquet et al. (2006) and Stamps et al. (2008) (Figs.
S5 and S6) shows that the four vectors are compatible
within uncertainties when using the full covariance
(Fig. S6).
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Fig. 3 Error ellipsoids (95% confidence) of six Euler vectors: WEST
(blue), CENTRAL (green), WEST_C (cyan), SOUTH_C (magenta),
SOUTH (red), and NUBIA (black) in three dimensions, calculated

with respect to the IGb08 reference frame. All Euler vector ellipsoids
intersect each other. WEST has the largest ellipsoid while NUBIA and
SOUTH_C are overlapped completely

6 Annual Signal Amplitude

Many periodic signals affect GPS time series (e.g., satellite
orbit configuration, seasonal variation of atmospheric water
content, and groundwater storage) and are usually most
prominent in the vertical component (Van Dam et al. 2010;
Blewitt and Lavallée 2002; Hinderer et al. 2009; Nahmani
et al. 2012). Here, we analyze the variation of the annual
signal (b in Eq. 1) and how it changes as function of latitude.

The annual variation of the horizontal component ranges
between 0.1 and 0.2 mm and is of similar magnitude to
the repeatability of the site position. The only stations with
large horizontal annual amplitudes are MSKU and KSTD,
which do not fit the rigid plate behavior. The amplitude of
the annual signal of the vertical component varies from 0.5
to 2.5 mm, and has strong regional variation. In the Southern

and driest region, the annual signals have low amplitudes,
while sites within the Western region and the Congo and
Zambezi basins show large amplitudes (Fig. 4). These annual
amplitudes correlate with the climatic variability of the two
regions (e.g., Nahmani et al. 2012 and Ramillien et al. 2014).
The central part of the West region (5ı N to 15ı N) has
amplitudes of 1.5 to 2.5 mm, and is strongly affected by
the West Africa Monsoon (WAM) (Bock et al. 2008). The
second largest annual signal is at MAUA, near the Okavango
River delta, one the largest inland river deltas with extensive
seasonal flooding (McCarthy 1993). The phases of the annual
signal also agree with the observations of Nahmani et al.
(2012) and Ramillien et al. (2014) and with the water cycle
(Crowley et al. 2006; Ramillien et al. 2014): the peak of
the annual signal for the West network is completely out
of phase with the amplitude at MAUA and the other sites
around the Zambezi/Congo basins (Fig. 4). This suggests that
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Fig. 4 Signal amplitudes of the vertical GPS component of the Nubia
plate. Amplitudes vary with latitude: the South region has the smallest
amplitudes while the West and Central regions have the largest ampli-
tudes. Lines indicate the phase of the seasonal signal by pointing North
if the peak of the signal is in January, and South if it is in June

hydrologic and atmospheric loading are probably the main
sources of seasonal variation.

7 Noise Power Spectrum

GPS time series are affected by many sources of noise
including GPS monument stability, antenna problems, mul-
tipath, and modeling assumptions (e.g., troposphere, iono-
sphere, oceanic and atmospheric loading, and orbits) (Wyatt
1989; Johnson and Agnew 1995; Langbein et al. 1995; Lang-
bein and Johnson 1997). Some sources of noise are related
to the water cycle, and we expect them to be dependent on
latitude.

However, our analysis of the power spectrum of the noise
component fit by the AVR white and power law model (Hackl
et al. 2011), indicates that spectral characteristics do not
vary with latitude. The spectral indices for all three GPS
components at the sites on the Nubia plate fall between �0.6

and �1.1, with the majority clustering between �0.9 and
�1.1 (essentially pure flicker noise). The small geographic
variation suggests that the differences are more likely related
to local effects (monument type, multipath, or human activ-
ities near the site) than to latitudinal variation. As already
observed by Hackl et al. (2013), the power spectrum helps
identify stations that are problematic or affected by transient
behavior by having a spectral index closer to a random walk
than to flicker noise.

8 Discussion and Conclusions

Despite geological and geophysical observations suggest-
ing that there is internal deformation within the Nubia
plate, our analysis shows that within our current network
geometry and uncertainties, the Nubia plate behaves like a
rigid block. Thus, the assumption of a rigid Nubia plate
would not significantly bias a global reference frame. The
Euler vectors calculated in this study indicate that the West
region is the only region that may move relative to the
rest of the plate. The ellipsoid corresponding to the Euler
vector describing the rigid motion of this region is the
only one not nested within the others. Nonetheless, it is
still compatible with the other Euler vectors within 68%
confidence.

Given the geophysical and geological observations of
possible deformation along the CVL and swEAR, we suggest
that better geometry and denser local networks are needed to
identify tectonic signals in those regions.

Even within regions with a denser network like the South
African Cape Town region, the GPS network is not sufficient
to observe slow tectonic signals. Historically, this area has
been affected by moderate to strong earthquakes (Midzi et al.
1999, 2013), but the GPS data do not show significant strain
accumulation. Detailed studies accounting for local effects
at each station, and a better realization of local reference, are
necessary to identify such signals.

Large reduced �2 and the magnitude and orientation of
residuals suggest that we underestimate uncertainties. Our
choice of the error model (a periodic signal combined with
white and power law noise) could lead to such underestima-
tion, or we may need longer time series to better estimate
the higher correlated noise. Time series are affected by both
anthropogenic (e.g. mining, agricultural, water extraction,
and damming) and natural (drought, water cycle, and atmo-
spheric) signals that are quasi-periodic. These signals may
affect our velocity field and uncertainty estimation because
they cannot be fully corrected for using periodic signals.
A detailed analysis similar to Karegar et al. (2015) could
improve our ability to separate these quasi-periodic signals
and to better quantify the velocity field and its uncertainties.
Furthermore, a denser and better distributed GPS network is
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needed for an improved understanding of intraplate deforma-
tion and associated hazards.
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