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Abstract In February 2014 aMw = 7.0 slow slip event (SSE) took place beneath the Nicoya Peninsula, Costa
Rica. This event occurred 17 months after the 5 September 2012,Mw = 7.6, earthquake and along the same
subduction zone segment, during a period when significant postseismic deformation was ongoing. A second
SSE occurred in the middle of 2015, 21 months after the 2014 SSE and 38 months after the earthquake. The
recurrence interval for Nicoya SSEs was unchanged by the earthquake. However, the spatial distribution of slip
for the 2014 event differed significantly from previous events, having only deep (~40 km) slip, compared to
previous events, which had both deep and shallow slip. The 2015 SSE marked a return to the combination of
deep plus shallow slip of preearthquake SSEs. However, slip magnitude in 2015 was nearly twice as large
(Mw=7.2) aspreearthquakeSSEs.WeemployCoulombFailureStress changemodeling inorder toexplain these
changes. Stress changes associatedwith the earthquake and afterslip were highest near the shallowportion of
the megathrust, where preearthquake SSEs had significant slip. Lower stress change occurred on the deeper
parts of the plate interface, perhaps explaining why the deep (~40 km) region for SSEs remained unchanged.
The large amount of shallow slip in the 2015 SSE may reflect lack of shallow slip in the prior SSE. These
observations highlight the variability of aseismic strain release rates throughout the earthquake cycle.

Plain Language Summary We analyzed small signals in continuous GPS time series. By averaging
many GPS measurements over a day, we are able to get very precise measurements of the motion of the
ground. We found two events in the Nicoya Peninsula of Costa Rica where the GPS changed direction and
began moving toward the oceanic trench in the opposite direction of subduction plate motion. These events
are called slow slip events and have been found in other regions such as Cascadia, Alaska, Japan, and New
Zealand. In Nicoya, a large earthquake of magnitude 7.6 on the Richter scale occurred in 2012. The two slow
slip events occurred in 2014 and 2015. We explored the relationship between the earthquake and the slow
slip events and looked to see if the earthquake changed the behavior of the slow slip events. We found
that the slow slip events have a regular timing before and after the earthquake, but the behavior of the slow
slip events since the earthquake is different with slip taking place along different portions of the plate
interface then was previously seen.

1. Introduction

Slow slip events (SSEs) have now been observed in many subduction zones [e.g., Dragert et al., 2001; Lowry
et al., 2001; Obara, 2002; Douglas et al., 2005; Schwartz and Rokosky, 2007]. However, they remain enigmatic
for several reasons, including spatially limited and temporally aliased observations. Many SSEs occur offshore,
beyond the reach of on-land geodetic observations. We also lack a long-term record of these events, for
example, over a full seismic cycle. Hence, their role in the overall strain accumulation-release budget for sub-
duction zones, and whether they can be used for hazard forecasting (e.g., do slow slip events trigger earth-
quakes?) is difficult to evaluate [Obara and Kato, 2016].

Available data are largely limited to the middle or late parts of the earthquake cycle and to the downdip
portion of the seismogenic zone, although seafloor geodetic data offshore Tohoku may also provide an
opportunity to study earthquake cycle effects on SSE [Ito et al., 2013]. The area of Nicoya in Costa Rica
is an exception to this. Prior to the 2012 earthquake, SSE events in Nicoya were detected in two regions:
a deep region (40 km depth) of the plate interface beneath the Gulf of Nicoya, and a shallow region
(10–20 km depth) just off the coast [Dixon et al., 2014]. The geodetic network was able to detect slip
due to SSE after the Mw 7.6 megathrust event of 4 September 2012. Here we describe two SSEs in the
early part of the earthquake cycle. The first event occurred beneath the Nicoya peninsula of Costa Rica
in 2014, 1.5 years after the 2012 earthquake. The second event occurred 2 years later in October 2015.
Slip distribution estimates for the 2014 event indicate that slip occurred beneath the Gulf of Nicoya,
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centered at a depth of 40 km. This deep slip patch is consistent with observations of deep slow slip in Nicoya
prior to the earthquake [Dixon et al., 2014]. Shallow (10–20 km depth) slip magnitudes during the 2014 event
were considerably less than events observed during the late interseismic portion of the earthquake cycle.
During the 2015 event, high slip magnitudes returned to the shallow portion of the plate interface, with
spatial distribution matching that of large preearthquake SSEs. However, total moment release during this
second SSE was considerably larger, almost double that of previously observed SSEs. We hypothesize that
the combination of coseismic slip and afterslip produced stress changes at the nucleation site of shallow
slow slip events, making conditions for their generation unfavorable. We employ Coulomb stress modeling
to explain the lack of shallow slow slip in 2014 and the persistence of deep slow slip throughout the
earthquake cycle and discuss the interplay between earthquakes, afterslip, and aseismic slip.

2. Geologic Setting and Geodetic Network

High precision GPS instruments in the Nicoya Peninsula of Costa Rica have facilitated detailed geodetic obser-
vations of key parts of the earthquake cycle: late interseismic [Dixon et al., 2014; Jiang et al., 2012; Feng et al.,
2012], coseismic [Protti et al., 2014], and early postseismic stages [Malservisi et al., 2015]. The peninsula lies
along the Middle America subduction zone, where the Cocos plate is subducted beneath the Caribbean plate
at a rate of 8 cm/yr (Figure 1) [DeMets, 2001]. The top of the subducting slab is ~20 km below the coast of the

Figure 1. Tectonic map of Costa Rica. Yellow triangles indicate location of GPS stations. Contours mark 10 km intervals of
slab depth according to Slab1.0 [Hayes et al., 2012].
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peninsula, and the peninsula overlies the main seismogenic zone, allowing good geodetic resolution of this
critical area of the megathrust interface with onshore instruments. A network of GPS stations began to be
installed in the early 2000s, and the first SSE was recognized in 2003 [Protti et al., 2004; Davis and Villinger,
2006]. With densification of the network by 2007, now consisting of 18 stations, detailed images of slip distri-
bution during SSEs became possible, [Outerbridge et al., 2010]. In 2012, a magnitude 7.6 earthquake took place
within a previously identified locked zone [Feng et al., 2012; Protti et al., 2014; Xue et al., 2015]. Our new obser-
vations provide an opportunity to explore how SSEs contribute to strain accumulation and release in the sub-
duction zone during the early stage of the earthquake cycle, and their relation to megathrust earthquakes.

3. Data Processing

GPS data are processed using GIPSY-OASIS 6.4 software with orbits and satellite clock estimates from the Jet
Propulsion Laboratory (JPL). Daily static positions were calculated using the Precise Point Positioning method
[Zumberge et al., 1997]. Phase ambiguity resolution was performed using the single receiver algorithm
[Bertiger et al., 2010]. Ocean loading corrections were applied using FES2004 [Lyard et al., 2006]. VMF1 map-
ping functions were used to estimate and correct for the tropospheric delay [Boehm et al., 2006]. Second-
order ionosphere corrections were done using the IONEX model [Bassiri and Hajj, 1993; Kedar et al., 2003].
Daily solutions were computed in a loosely constrained reference frame, then aligned with IGb08
[Rebischung et al., 2012] using daily seven parameter transformation files provided by JPL. The final products
are time series of daily positions for each component (north-south, east-west, and up-down).

4. Seasonal Signal Removal

Identifying SSEs and quantifying their slip history require careful separation of noise and various signals in the
time series. This can be challenging because SSE signals may approach the level of GPS noise. Iterative tech-
niques are often employed but can involve trade-offs among estimated parameters. When the observation
network is sufficiently large and observed transients are only present on a subset of the network, spatial fil-
tering can be used to reduce common mode noise [Wdowinski et al., 1997]. However, for smaller networks, if
the deformation transient is present at all stations, then stacking and subsequent common mode noise
removal may alter the observed signal. Seasonal signals related to atmospheric effects can also be a chal-
lenge. Commonly, fixed amplitude sine and cosine functions are fit via least squares to the time series and
then removed [e.g., Jiang et al., 2012]. This can lead to artifacts if seasonal amplitudes vary.

A new approach to noise and parameter estimation, termed Multi-channel Singular Spectrum Analysis
(MSSA) [Walwer et al., 2016] enables simultaneous identification of common mode signals and time-varying
seasonal signals. MSSA takes advantage of the spatial correlations within the network by incorporating multi-
ple data channels, similar to Principle Components Analysis (PCA), which is equivalent to MSSA when the
time lag is 0 [Dong et al., 2006]. MSSA is also efficient at recognizing temporal correlations (such as seasonal
signals) through calculation of the covariance of time lagged copies of the original time series using a mod-
ification of singular spectrum analysis (SSA) [Chen et al., 2013]. This approach allows for simultaneous extrac-
tion of information on spatial and temporal correlations within the network [Walwer et al., 2016]. This is an
expansion of the PCA technique which is efficient at recognizing spatial correlations [Dong et al., 2006]
and SSA which is used for the recognition of temporal correlation with a single channel. MSSA deals with
both spatial and temporal correlations and has the advantage of not requiring a priori assumptions about
the nature of the time series [Walwer et al., 2016]. It can thus adjust for variable amplitude seasonal signals.

MSSA begins with the creation of data matrix blocks X1,…,L for each component of each GPS station where
L = c × n, where c the number of GPS components analyzed and n is the number of stations. The first column
of each block Xl contains a copy of the original time series of length N�M + 1 with N equal to the number of
epochs and M is the maximum time lag. Each subsequent column is formed by applying a time lag of one
epoch to the original time series, out to a time lag of M [Ghil et al., 2002]:

Xl ¼

xl0 xl1 ⋯ xlM
xl1 xl2 ⋯ xlMþ1

⋮ ⋮ ⋱ ⋮

xlN�Mþ1 xlN�Mþ2 ⋯ xlN

2
66664

3
77775 (1)
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where xl1; x
l
2;⋯; xlN

� �
is the time ser-

ies for one component of a single sta-
tion and l = 1,2, ..., c*n. Ideally, M
should be longer than the longest
period signal to be identified, but an
empirical estimation by trial and error
is effective.

The full trajectory matrix D is formed
through the combination of all the
matrices Xl (one for each GPS station
and component) [Broomhead and
King, 1986; Allen and Robertson, 1996]:

D ¼ X1 X2;…; XLð Þ (2)

Matrix D has L columns and N�M+ 1
row. The matrix D can then be used
to find the symmetric M × M lagged
covariance matrix C:

C ¼ 1
N �Mþ 1

DTD (3)

Eigenvalue decomposition of the
matrix C produces eigenvalues λk and

eigenvectors Ek indicating themagnitude of variance along the components of a given base of the vector space
of the signal. The eigenvalues λk provide an indication of the variance associated with their corresponding prin-
cipal. Ordering from the largest to the smallest the eigenvalues and corresponding eigenvectors is then equiva-
lent to ordering the components of the observed signal in order of decreasing variance. (Figure 2). Principal
components, Ak, are then calculated through the projection of the data matrix X onto the eigenvectors E:

Ak
t ¼

XM
j¼1

XL

l¼1

xltþj�1E
k
j (4)

where t is the time index (t = 1, 2,…, N � M), k is the rank of the eigenvalue (k = 1, 2, …, M), j is the time lag
(j = 1, 2,…,M), and l is a GPS component time series (l = 1, 2,…, c*n). Each times series, xl, can then be partially
reconstructed using the kth principal component [Vautard et al., 1992]:

exk l
t ¼

1
M

XM
j¼1

Akt�jþ1E
k
l M ≤ t ≤ N �Mþ 1

1
t

Xi

j¼1

Akt�jþ1E
k
l 1 ≤ t ≤ M� 1

1
N � t þ 1

XM
j¼1�NþM

Akt�jþ1E
k
l N �Mþ 2 ≤ t ≤ N

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)

The summation of all reconstructed components, exk l , reconstructs the original data xl. [Walwer et al., 2016].

We performed MSSA on all available time series from January 2007 through June 2016. The predominant sig-
nals in each time series correspond to a linear trend reflecting interseismic strain accumulation, offsets due to
the 2012 earthquake, and postseismic signals. In order to highlight the variance associated with SSEs, we
removed these signals prior to MSSA analysis by fitting each time series independently using the following
equation via least squares:

ui tð Þ ¼ aþ bt þ
Xm
j¼1

gjH t � tj
� �þX3

i¼1

ki 1� e
t�To
τi

� �
(6)

where a is a bias mainly related to the assumed reference epoch, b is the interseismic rate (the tectonic velo-
city during the interseismic period), H(t � tj) is the Heaviside function to take into account the coseismic

Figure 2. Normalized eigenvalue spectrum for differentwindow lengths (time
lag, M). Choice of window length does not significantly affect the analysis.
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displacement or instrument substitution time tj, and gj is the amplitude of offset due to equipment changes
and earthquakes. The last terms correspond to transients associated with postseismic deformation. Following
Malservisi et al. [2015], we assume that these decay exponentially with three characteristic times τi, and
amplitudes ki. Decay times (7, 70, and 420 days) are taken from Malservisi et al. [2015] and are not
estimated during the fitting process. Displacement amplitudes related to each time decay time at each
station and component can be found in Table S1 in the supporting information.

Significant gaps in our time series exist, reflecting growth of the network and equipment failures (Figure S1).
These gaps are filled using Gaussian random noise with zero mean and unit standard deviation [Walwer et al.,
2016; Unal and Ghil, 1995]. While the filled time series do not have the same spectral properties as the original
GPS time series, choice of a Gaussian random noise filler causes the variance associated with the gap asso-
ciated in the time series to be associated with lower ranked eigenvalues such that they do not bias the sea-
sonal signal estimate. We apply a window of length (time lag) M of 660 days, chosen to capture the periodic
signals associated with SSEs which have typical repeat times of 620 days. Tests using different window
lengths between 400 and 700 days did not significantly affect results (Figure 2).

The eigenvalue spectrum decays slowly, as is common when using a long sliding time window, reflecting a
spreading of features across multiple eigenvalues [Vautard and Ghil, 1989]. For eigenvalues with rank larger
than 30, the spectrum levels off, signaling that the majority of the signal in the network time series can be
represented using only the first 30 principal components (PCs). However, due to the slow decay, we include
all PCs which do not contain seasonal periods. Through analysis of the power spectral density of the PCs
(Figure 3), we identify four components that contain frequency at the annual (PCs 2 and 3) and semiannual
(PCs 13 and 14) periods. These seasonal signals are large in tropical regions such as Costa Rica, presumably
reflecting atmospheric effects [Mao et al., 1999].

In order to remove the seasonal signal, we reconstruct the time series for each component, excluding PCs 2, 3,
13, and 14, equivalent to extracting the signals associated with the PCs 2, 3, 13, and 14 from the original data
set. The residual time series contain transient signals not associated with seasonal periods, as well as noise. In
the following analysis we use the reconstructed time series for a study of SSE behavior (Figure 4).

The MSSA technique does not provide any information about the physical processes governing specific prin-
cipal components. As such, a portion of the signal contained within the excluded principal components could
be related to tectonic signals but represent a much smaller portion of the overall time series variance. MSSA
performs slightly better than traditional fixed sine and cosine analysis of seasonal signals [Chen et al., 2013];
however, the analysis of the SSE behavior that follows is consistent regardless of filtering approach.

5. SSE Identification

SSE onset was initially identified through visual inspection of the raw GPS displacement time series. The dis-
placement at each time step was then modeled as the residual inter SSE trend, and hyperbolic tangent func-
tion representing SSEs [Larson et al., 2007]. The equation takes the form.

Figure 3. Power spectral density plots for station BIJA for the east, west, and vertical components. The grey colors are the
raw time series. Dark blue is the reconstructed time series using the second principal component. Green is the recon-
structed time series using third principal component. These components show a clear peak at 1 c/yr. Light blue and red
represent the reconstructed thirteenth and fourteenth principal.

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013741

VOSS ET AL. EARLY EARTHQUAKE CYCLE SSES 6777



u tð Þ ¼ aþ bt þ
Xn
k¼1

Uk

2
tanh

t � Tk

τk
� 1

� 	
(7)

where a is the offset at the assumed reference epoch, b is the inter-SSE rate, Uk describes the amplitude of the
kth SSE, Tk is the given SSE midpoint time, and τk is its duration. This model is fit to the time series using the
Levenburg-Marquart algorithm as implemented in Python package lmfit (http://lmfit.github.io/lmfit-py/).
Parameter bounds are used for estimation of Tk and τk based on visual inspection, with values estimated
as part of the iterative inversion process. Figure 5 shows an example of the full displacement model and
the various components modeled and removed. Table S2 shows the resulting displacement estimates and
one standard error.

6. Slow Slip Recurrence

The 2014 SSE started in early February and lasted ~1.5 months, 20 months after the preceding SSE, which had
occurred immediately prior to the 2012 earthquake [Dixon et al., 2014]. The 2015 SSE started in October and
lasted ~7 months, similar to an SSE that occurred in 2009. Given the 12 year record in Costa Rica, we can cal-
culate the average recurrence interval for SSEs. Small events, below our assumed detection threshold of M
6.5, are excluded as their identification is dependent on network density (Figure S1). The recurrence rate of
SSEs has decreased with the increasing number of stations which we attribute to better detection capabil-
ities. If we take into account the smaller events identified during the late interseismic period, the variability
in SSE recurrence is much larger. These events have varying slip distributions and have also proven difficult
to reliably detect [Jiang et al., 2012, Dixon et al., 2014]. Following the earthquake, ongoing postseismic defor-
mation may mask these smaller SSEs. Eight large events (M > 6.5) have been recorded by the network

Figure 4. Example time series. (top) The longitudinal component of station BON2, with postseismic signals removed. (mid-
dle) The principal components associated with seasonal signals. (bottom) The residual time series after removing the
seasonal components.
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(Figure 6). Two of them are large events prior to 2007, identified by both GPS and offshore boreholes as
pressure transients [Davis et al., 2011]. In order to reduce biases due to the variation of detection threshold
of the different events, we choose to analyze the recurrence interval using only these larger events. These
events have similarities in both slip distribution and their larger signal-to-noise ratio. Nevertheless, it is
important to note that the small number of observed events affects the following statistical analysis.

One way to investigate the earthquake effects on the recurrence interval of SSEs is to consider whether the
system is in steady state. If the system is in steady state, then previous SSE timing can be used to predict the
timing of future SSEs. We use the Kolmogorov-Smirnov (K-S) test statistic (Dn) [Chakravarty et al., 1967] to
determine if recurrence rates in Nicoya are in steady state. In this case we test the difference between the
observed distribution and a uniform distribution, i.e., constant recurrence rate:

Dn ¼ max
t∈ S;T½ �

Fn tð Þ � t � S
T � S












� �
(8)

where t is time, S is start time, T is end time, and n is total number of events haven taken place at time t. The
observed distribution Fn is given by

Fn ¼ # ti ≤ Tð Þ
n

; i ¼ 1;…; n; S < t < T (9)

The null hypothesis can be rejected ifDn >
1:36ffiffiffiffiffiffiffiffiffiffi
N S;Tð Þ

p at the 95% confidence level [Zwillinger and Kokoska, 1999].

In this case N(S,T) is 11 events if we use all known SSEs starting with the first event in August 2003 through the
final event in October 2015. Dn is 0.07, and the system is clearly in steady state (Figure S1). Thus, we can
assume that previous events provide information on the recurrence of future events, an admittedly easy cri-
terion given the relatively small number of events.

The average recurrence interval for M > 6.5 SSE observed between 2007 and 2015 is 20.5 ± 5.5 months. The
standard deviation is largely controlled by the 2011 event. This event was preceded by an unusually long
duration (6 month) event in 2009 [Jiang et al., 2012], which may explain its delayed onset. If that event is
excluded, the standard deviation is reduced to 1.2 months with no change in the mean. This value
(20.5 months) is very similar to the previously identified recurrence interval (21 months) before the earth-
quake [Jiang et al., 2012]. Thus, the 2014 and 2015 slow slip events appear to have occurred “on schedule”
with no delay in timing induced by the 2012 earthquake.

Figure 5. Example time series showing relative contributions of tectonic signals since GPS station HUA2 was installed. Blue
is measured GPS displacement; red is modeled displacement. Black lines represent displacements due to known or
modeled tectonic signals. Sum of all the black lines shown gives the modeled displacement shown in the top panel (red).
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The periodic behavior of SSEs has been simulated with 2-D and 3-D models of the earthquake cycle using a
rate-and-state friction framework [Matsuzawa et al., 2010; Colella et al., 2012]. These models predict a short-
ening of the SSE recurrence interval as the earthquake cycle progresses [Matsuzawa et al., 2010] and resulting
stress concentration at the base of the seismogenic zone [Colella et al., 2012]. Evidence of recurrence interval
shortening has been seen along the Boso peninsula, although the mechanism is still unclear [Ozawa, 2014;
Hirose et al., 2012]. In Nicoya this is not observed for the large SSE: the observed recurrence interval for large
SSE is similar before and after the earthquake. It is worth to note that an increase of events just before the
main shock of 2012 can be observed including the small events, but we are not able to distinguish if the var-
iation in periodicity is merely a result of a change in detection threshold.

7. Slip Inversion

In order to investigate the spatial extent of the early earthquake cycle SSEs and compare to previous events,
we use the observed GPS displacements to invert for slip on the subduction interface. We use the plate geo-
metry described by Slab1.0 [Hayes et al., 2012] discretized into 18 along strike and 15 along dip patches of
approximately 30 km2. Slip on the patches is then related to surface displacements using an analytical solu-
tion for rectangular dislocations in a half-space [Okada, 1992]. Slip direction is constrained to positive rakes;
e.g., only thrust and strike slip motion is allowed. Rake is allowed to vary between patches. We use the
Levenburg-Marquart algorithm implemented in the PEST software [Doherty, 2012] to perform the inversion.
PEST uses the Gauss-Newton algorithm to form a trust region between the Newton search direction and the
gradient descent direction in the parameter space [Aster, 2013]. The trust region represents the region of the
space of parameters where the objective function is well approximated by the model function. In order to
attain physically reasonable results, Tikhonov regularization is implemented through minimization of para-
meter differences. The objective function minimized represents the sum of contributions from the regulari-
zation equations and the measured displacements. The measurement displacements are weighted
inversely proportional to their estimated one standard error as estimated from the Levenburg-Marquart algo-
rithm, and both horizontal and vertical observations are used. Errors for the horizontal components and ver-
tical components average 5 mm and 20 mm, respectively. A target measurement objective function is set
such that the cumulative residual approaches the assumed measurement error. This solution is equivalent
to the minimum error variance solution and enforces the regularization conditions to the maximum extent
possible within the assumed observation noise [Doherty and Hunt, 2010].

7.1. The 2014 SSE Slip Distribution

The 2014 event is characterized by a deep slip patch coinciding with the 45 km depth contour on the upper
slab interface, with a peak slip of 135mm (Mw = 7.0) underneath the Nicoya Gulf (Figure 7). The slip associated

Figure 6. Timeline and Magnitude of Nicoya SSEs. (left) GPS network operating in 2014 is shown by red triangles. (right)
Red vertical bar marks the 2012 earthquake. Black horizontal line marks the assumed M6.5 SSE detection threshold. The
separation between shallow and deep is defined as the 24 km depth contour of the Slab1.0 fault model [Hayes et al., 2012]
and is indicated by green for the shallow shaded region and bars and blue for the deep shaded region and bars.
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with the 2014 event is similar in both location and magnitude to the slip observed for the deep patch of the
events observed in 2007, 2009, and 2012 SSEs [Outerbridge et al., 2010, Dixon et al., 2014]. This deep patch of
SSEs is located downdip from an asperity that ruptures every ~50 years and last ruptured during the 1990M 7
earthquake [Protti et al., 1995]. Noticeably absent is the offshore shallow slip patch (~10–15 km depth) that is
persistent in earlier events [Dixon et al., 2014]. Relaxation of regularization conditions sufficiently fit the data
with a single condensed region of slip in the center of the deep patch, with zero slip in the offshore region.
This solution greatly over fits the data resolution but provides insight into the dominant slipping area during
2014. The predominance of uplift across the network during the 2014 event, as well as the relative onset time
of the events in the different GPS time series (the observed signal onset migrates trenchward) are consistent
with lack of shallow slip in 2014 (Figure S2). This contrasts with previous large SSEs in Nicoya which all
contained some degree of shallow slip [Outerbridge et al., 2010; Dixon et al., 2014]. This behavior reinforces
the idea of different mechanisms for deep (>25 km) versus shallow (<20 km) SSEs [Outerbridge et al.,
2010], which span quite different temperature and pressure conditions. In comparison, the 2012
earthquake took place directly beneath the peninsula [Yue et al., 2013; Protti et al., 2014], while the
afterslip extended primarily updip of the main rupture [Malservisi et al., 2015]. The downdip limit of the
seismogenic zone of large regular megathrust earthquakes under Nicoya lies at 30–35 km depth,
suggesting that deep SSEs are taking place in the transition zone from locked to continuous creep.

7.2. The 2015 SSE Slip Distribution

The 2015 event is similar to the large events prior to the 2012 earthquake; however, it is significantly larger,
M = 7.2 (Figure 7). Observed displacements are approximately double what was observed in 2014. However,
the size and duration of the 2015 event are consistent with global averages of moment-duration scaling [Ide
et al., 2007]. Coastal stations see significant deformation (Figure S2) indicating that shallow slip occurred
between 10 and 20 km depth likely on the plate interface. The persistent deep patch is still located beneath
the Nicoya Gulf, as in 2014 and preearthquake SSEs. The shallow zone of slow slip appears to be just off the
coast, not coincident with shallow slow slip during preearthquake SSEs [Outerbridge et al., 2010, Dixon et al.,
2014]. Tests of the inversion implementation with displacements from Dixon et al. [2014] are consistent with
their results. The shallow patch in 2015 appears to be in between the two zones of shallow slow slip observed
during the preearthquake period. This zone is coincident with the location of aM 6.6 aftershock that occurred
on 24 October 2012 [Malservisi et al., 2015]. Model resolution decays significantly with distance offshore
(Figure S3) [Dixon et al., 2014; Kyriakopoulos and Newman, 2016]. However, the region adjacent to the coast
has good resolution. The northwest corner of the megathrust appears to experience moderate amounts of
slip (~60–70 mm). However, there are no observations near this region of the fault so interpretation is diffi-
cult. Relaxation of regularization conditions does not remove the need for slip in this region, and it appears
to be similar to a region where slip occurred in 2007 and 2009 when observations were available immediately
above the fault in this zone [Dixon et al., 2014].

Figure 7. Slip Distributions for the SSEs. The (left) 2015 SSE and (right) 2014 SSE slip distributions. Color scale is slip mag-
nitude in millimeters. Black contours mark cumulative slip identified in previous SSE in the region contoured in units of
millimeter [Dixon et al., 2014]. Dotted lines mark the 10 km, 25 km, and 45 km contours of slab depth.
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8. Influence of Coulomb
Failure Stress Changes on
SSE Slip Distribution and
Occurrence Time

In order to describe the differing
modes of strain accumulation and
release on the subduction interface,
it is useful to consider zones of differ-
ing stress states and frictional proper-
ties [Scholz, 1998]. Portions of the
subduction zone where SSEs occur
are often described as conditionally
stable, since transient creep (SSE)
occurs and earthquakes can pro-
pagate although not nucleate
[Schwartz and Rokosky, 2007]. This
zone is often considered critically
stressed due to its response to small
changes in stress associated with
tides and other loading phenomena
[Lambert et al., 2009; Shen et al.,
2005]. If SSEs respond to stresses as
small as 0.015 MPa (0.15 bar)
[Rubinstein et al., 2008], then it stands
to reason that they should respond to
stress changes from the 2012 earth-
quake. To test this, we take the inte-
grated slip from the combination of
the earthquake, afterslip associated
with the 70 day relaxation time
[Malservisi et al., 2015] and the 24
October aftershock, and then calcu-
late the corresponding change in
Coulomb Failure Stress (ΔCFS) on
the plate interface (Figure 8)
[Reasenberg and Simpson, 1992; Stein
et al., 1992; Toda et al., 2011].
Positive values imply increased
chance of failure, while negative
values imply a reduced chance of fail-
ure. We use the slip distribution from
the coseismic, aftershock, and after-
slip inversion with the same model

geometry. In these calculations, we assume a rake of 90° similar to the rake of the modeled SSE and μ0 = 0.4.
Changes in rake direction consistent with thrust faulting do not significantly affect the calculated ΔCFS. We
find that cumulative slip from the earthquake, afterslip, and aftershock induces ΔCFS of +0.01 MPa on the
deep patch (A in Figure 8), +0.05 MPa on the southeastern portion of the shallow patch (B in Figure 8),
and +0.8 MPa on the northern shallow patch (C in Figure 8). In other words, stress changes in the shallow
patch were more than an order of magnitude greater than stress changes in the deep patch. The southeast-
ern shallow patch is marked by B in Figure 8, and the northwestern shallow patch is marked by C.

Static Coloumb stress changes from nearby earthquakes have been suggested to either hinder [Wallace
et al., 2014] or enhance [Hirose et al., 2012] SSE generation. In the case of the 2013–2014 Kapati, New
Zealand, SSE, a large change in ΔCFS following a M 6.4 intraslab normal faulting earthquake halted the

Figure 8. (top) Slip distribution from the combined 2012 earthquake, after-
shock, and afterslip. (middle) Fault normal stress change associated with
the slip distribution. (bottom) Coulomb stress change assuming pure thrust
motion. Black contours outline the slip from the 2014 SSE. A labels the loca-
tion of the deep SSE patch, B labels the location of the southeastern shallow
patch, and C labels the location of the northwestern shallow patch.
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SSE [Wallace et al., 2014]. ΔCFS induced by the Tohoku earthquake in the area of the 2011 Boso SSE (Japan)
was on the order of 0.1 MPa [Hirose et al., 2012; Liu et al., 2015],. The Boso event recurrence time was
advanced by an amount proportional to ΔCFS relative to its usual stress drop [Hirose et al., 2012].

These observations are limited to small stress changes due to either a small nearby earthquake or a large dis-
tant event. If we take the shallow and deep SSE in Nicoya as separate events, we can calculate their average
stress drop [Hirose et al., 2012]:

Δσ e 2:5Mo=S
1:5

where Δσ is the stress drop,Mo is the SSEmoment, and S is the slip area. The deep patch has an average stress
drop of ~0.01 MPa, while the shallow event has an average stress drop of ~0.006 MPa. The deep SSE patch
experienced a stress increase from the earthquake on the order of its typical stress drop, while the shallow
patch experienced a stress increase from the earthquake many orders of magnitude greater than its usual
stress drop. These stress drops are calculated using slip distributions from a homogeneous half-space, which
may underestimate the offshore slip [Williams andWallace, 2015]. The Nicoya earthquake should have caused
a temporary decrease in the recurrence rate for Nicoya SSEs according to the model of Hirose et al. [2012].
However, the deep patch seems to be unaffected, while the recurrence time for the shallow patch appears
to have increased (assuming this behavior continues), opposite to that expected from our simple ΔCFS cal-
culations, this suggests that the process controlling SSE behavior is not solely controlled by stress state. It
should be noted that the previous calculations are highly dependent on the slip estimates for the individual
events (both SSE and the earthquake) which contain significant uncertainty offshore as resolution decreases
and is further discussed in section 9 (Figure S3).

9. Discussion

It seems likely that conditions in the shallow SSE patch were sufficiently altered by the earthquake from
the original “conditionally stable” state, such that subsequent slow slip was temporarily precluded.
Afterslip mainly extended updip and along strike from the main earthquake rupture [Malservisi et al.,
2015], causing larger changes within the shallow SSE region compared to the deeper SSE region.
Inversions place afterslip as shallow as the boundary of previously identified SSE [Malservisi et al., 2015],
and afterslip may extend all the way to the trench [Hobbs et al., 2017]. This provides considerable uncer-
tainty regarding the validity of our coulomb stress calculation, which is dependent on the earthquake slip
distribution as inverted from the onshore GPS network. If afterslip does extend from the earthquake epi-
center to the trench this would greatly reduce the coulomb stress with the shallow SSE patch, and it may
even be negative. However, our afterslip estimates do not require significant slip within the shallow SSE
patch given the available observations. Stress calculations are further complicated by consideration of
rheologically dependent postseismic behavior such as viscoelastic relaxation. GPS along the peninsula
have not returned to their preseismic velocity as of the 2015 SSE implying that postseismic processes (pos-
sibly both afterslip and viscoelastic relaxation) may be ongoing and partially affect both location and mag-
nitude of the observed SSE.

The behavior of the 2014 SSE is consistent with the concept that deep and shallow SSEs are fundamentally
different [e.g., Saffer and Wallace, 2015]. The deep patch appears to display time predictable behavior
throughout the earthquake cycle. It is located downdip of an asperity that ruptures every ~50 years, possibly
associated with subduction of the Fisher seamount chain [Protti et al., 1995]. The location of this seamount
may be controlling deep SSE location [Dixon et al., 2014]. Behavior of the shallow patch is less clear. A simple
conceptual model distinguishes the behavior of these two patches based on the source, volumes, and pos-
sible role of fluids that may be responsible for transient slip behavior. The deep patch is associated with fluids
from slab dehydration associated with metamorphic phase reactions [Rogers and Dragert, 2003; Szeliga et al.,
2004], a process that may be relatively constant throughout the earthquake cycle andmay have relatively low
volumes and fluxes. Fluids generated near the shallow patch are controlled by compaction and dehydration
of subducting sediments, likely distributed heterogeneously throughout the megathrust, and with poten-
tially higher volumes, fluxes, and variability [Saffer and Wallace, 2015]. The higher permeability associated
with the shallow subduction zone experiences greater changes during earthquakes and afterslip and hence
requires more time to heal compared to the less permeable deep subduction zone [e.g., Audet et al., 2009].
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The apparently fragile nature of the shallow SSE zone identified here may explain why deep SSEs are identi-
fied in many subduction zones, while shallow SSEs are much less common. However, shallow SSE are difficult
to assess using onshore instrumentation, potentially creating an observation bias. Alternatively, our observa-
tion period is too short to have documented the full spectrum of SSE behavior in Nicoya.

Stress interaction, as the slip front moves downdip, between the zones allows for both patches to slip simul-
taneously but does not require it, as was the case during the 2011 shallow SSE [Dixon et al., 2014] and 2014
deep event. In addition, different time-dependent behavior is seen at inland stations compared to coastal sta-
tions (Figure S2). Inland stations generally observe a longer duration signal than coastal stations, which are
impulsive. This may indicate that the deep slip patch in 2014 and 2015 had lower slip rates with longer slip
durations than the shallow patches. Alternatively, rheological differences near the transition zone contribute
to the longer duration at the inland stations. Interaction between the two patches may have occurred in the
2007 SSE, in which coastal stations responded first, hinting that the shallow slow slip patch slipped before the
deep patch [Outerbridge et al., 2010; Jiang et al., 2017. Future observations may provide additional insight into
these relationships. In particular, frequent observations of offshore strain accumulation are important, as this
region appears to be more variable. Improved understanding of these temporally variable locking and strain
release patterns [e.g., Frank, 2016;Melnick et al., 2017] throughout the earthquake cycle may allow better fore-
casts of earthquake hazard and tsunami.

10. Conclusions

We describe two SSEs that occurred in 2014 and 2015 in the early part of the earthquake cycle in the northern
Costa Rica subduction zone. These events took place simultaneously with significant postseismic deforma-
tion associated with the 2012 M 7.6 earthquake. The recurrence rate of the deep SSEs in the Nicoya region
was unchanged despite the large earthquake. The 2014 SSE is predominately a deep (40 km) slip event with
the slip of shallow region normally active in previous events significantly reduced or not present. This is a sig-
nificant change from preearthquake SSEs, all of which included considerable shallow slip at depth of around
15 km depth. The 2015 event was significantly larger than pre-earthquake SSEs, and shallow slow slip
returned. This indicates that slip distributions from SSEs in Nicoya are not constant throughout the earth-
quake cycle, generating uncertainty in the long term strain accumulation.
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